

CAHO-ISQua Webinar 28: Application of FMEA to healthcare risk management

Associate Professor Robyn Clay-Williams Tuesday 4 April 2023

Failure Mode and Effects Analysis (FMEA)

What is it?

- A method for ranking and managing risk
 - Identify risk
 - Analyse risk
 - Control risk
- Can be quantitative or qualitative

Failure Mode and Effects Analysis (FMEA) Failure modes (What could go wrong?)

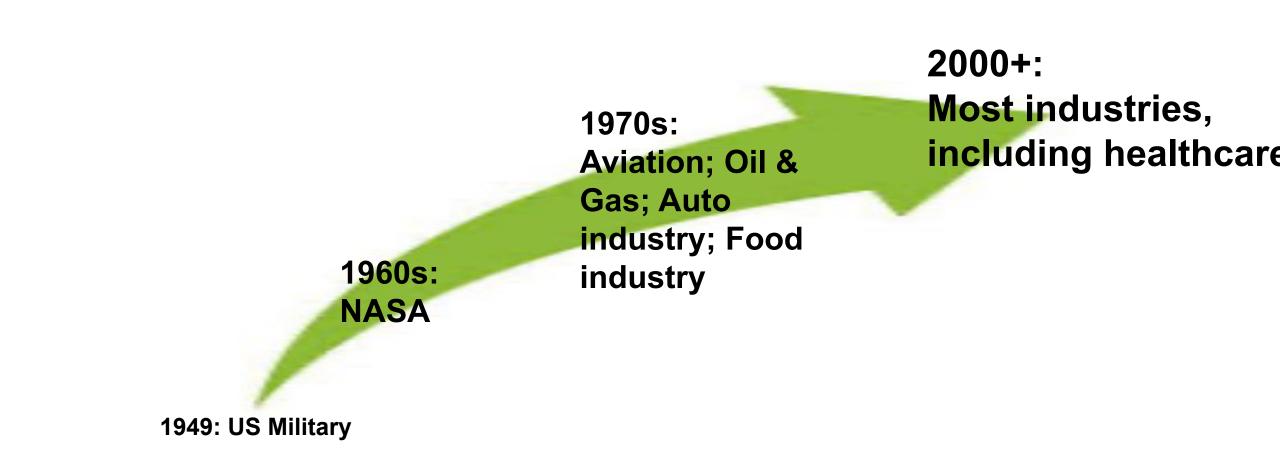
Failure causes (Why would the failure happen?)

Failure effects (What would be the consequences of each failure?)

Failure Mode and Effects Analysis (FMEA)

When might you use it?

- Analysing failures
 - what has a high impact or happens often?
- Process improvement
 - introducing or amending a work practice
- Workplace redesign
 - new location, new equipment, staffing changes



Basic risk management model

			Probability	8
		Low	Medium	High
	Significant	Substantial management required	Must manage and monitor risks	Extensive management crucial
Impact	Moderate	May accept risks but monitor them	Management effort worthwhile	Management effort required
	Limited/Minor	Accept risks	Accept but monitor risks	Manage and monitor risks

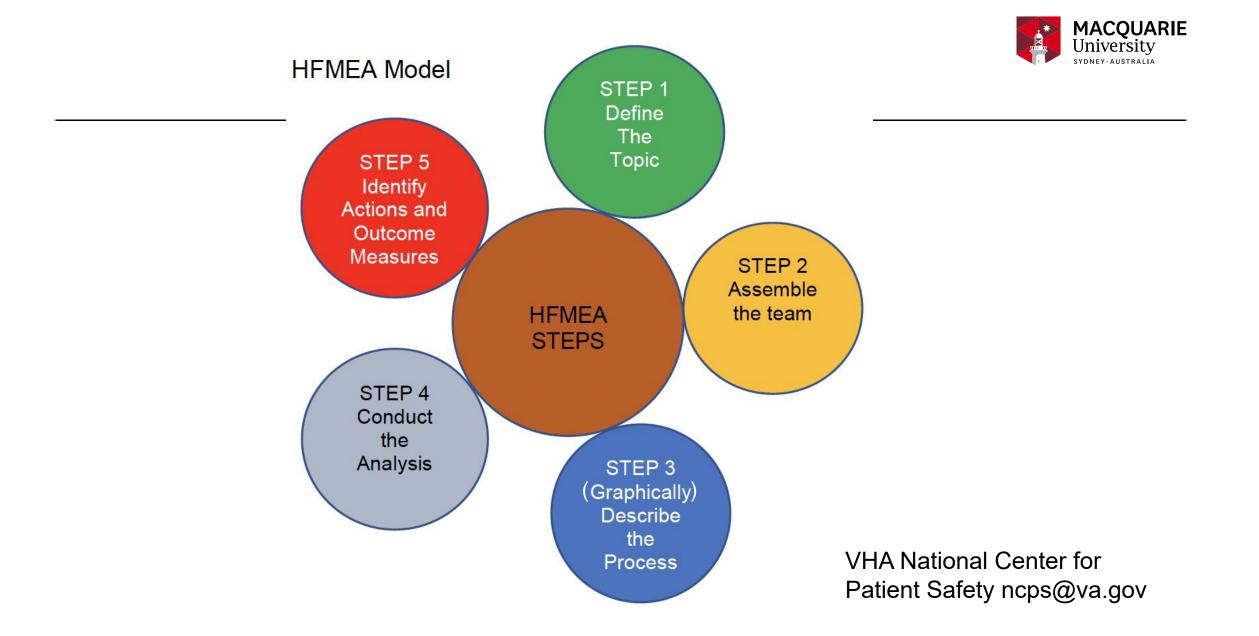
Failure Mode and Effects Analysis (FMEA)

FMEA tools - healthcare

Safer Systems • Safer Care

https://www.patientsafety.va.gov/professionals/ ontheob/HFMEA.asp https://www.ihi.org/resources/Pages/Tools/Fail ureModesandEffectsAnalysisTool.aspx

FMEA tools - healthcare



Safer Systems • Safer Care

https://www.patientsafety.va.gov/professionals/onthej ob/HFMEA.asp

https://www.ihi.org/resources/Pages/Tools/Fail ureModesandEffectsAnalysisTool.aspx

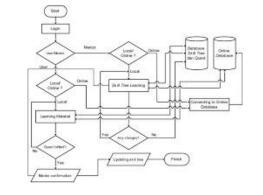
Step 1. Define the topic

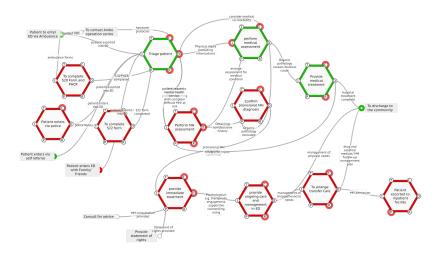
- Must be able to define the system, process or problem
- Must not be overly complex or have too many subprocesses
 - If large or complex, pick the most critical subprocess:

e.g. instead of 'medication management', pick 'medication ordering', 'dispensing' or 'administration processes'

Step 2. Assemble the team

- A safety, quality or risk management expert to lead
- Multidisciplinary team
- Subject Matter Experts (SMEs)
- Include everyone who is involved in the process
 - Core members will be part of the analysis and outcomes group
 - Ancillary members may only need to participate in 'Step 3. Describing the process'




Break the process or problem into specific steps,

Step 3. (Graphically) describe the process

- and number each step
- Using a process mapping method your team is familiar with can help:
- e.g. flowcharts, fishbone diagrams, swim lanes, Functional Resonance Analysis Method (FRAM), etc
- Map how the process is routinely done (Work-as-Done)
- e.g. if working with an incident, describe the process as it should happen
- At the end of this step, you will have a numbered list of processes

Step 3. (Graphically) describe the process

- Working down the numbered list of processes, list all possible 'failure modes'
- e.g. anything that could go wrong, including minor or rare problems
- For each failure mode listed, identify all possible causes
- e.g. why would the failure happen?
- Using an incident analysis method your team is familiar with can help:
- e.g. Root Cause Analysis, fishbone diagrams, ACCIMAP, fault trees, etc
- For each failure mode listed, identify the failure effects
- e.g. what would be the consequences of the failure?

Process	Failure	Cause	Effect
Step 1.	1.		
Step 1.	2.		
Step 1.	3.		
Step 1.	4.		
Step 1.	5.		
Step 2.	1.		
Step 2.	2.		
Step 2.	3.		
etc			

Step 4a. For each failure mode, estimate the likelihood of occurrence:

How likely is it that this failure mode will occur?
 Sometimes you will have data, but usually it is an estimate by your assembled experts (consensus is key!)

Assign a score between 1 and 10, with 1 meaning "very unlikely to occur" and 10 meaning "very likely to occur."

	ilure	Cause	Effect	Likelihood of occurrence (1-10)	C	ikelihood f detection I-10)	Severity (1-10)	Risk Profile Number (RPN)	Actions to reduce occurrence
Step 1. 1.									
Step 1. 2.									
Step 2. 1.									

Step 4b. For each failure mode, estimate the likelihood of detection:

- If this failure mode occurs, how likely is it that this failure will be detected?
- Assign a score between 1 and 10, with 1 meaning "very likely to be detected" and 10 meaning "very unlikely to be detected."

Process	Failure	Cause	Effect	Likelihood c occurrence (1-10)	f	Likelihood of detection (1-10)	everity -10)	Risk Profile Number (RPN)	Actions to reduce occurrence
Step 1.	1.								
Step 1.	2.								
Step 2.	1.								

Step 4c. For each failure mode, estimate the severity:

- If this failure mode occurs, how likely is it that harm will occur?
- Assign a score between 1 and 10, with 1 meaning "very unlikely harm will occur" and 10 meaning "very likely that sever harm will occur."

e.g. for patient care, a score of 10 might mean the patient died

Process	Failure	Cause	Effect	Likelihood of occurrence (1-10)	Likelihood of detection (1-10)	Severity (1-10)	Nu	isk Profile umber RPN)	Actions to reduce occurrence
Step 1.	1.								
Step 1.	2.								
Step 2.	1.								

Step 4d. Multiply the three scores to determine the Risk Priority Number (RPN):

• RPN = O * D * S; Range: 0-1000

Identify the top 10 RPNs:

• These should be considered first for improvement opportunities

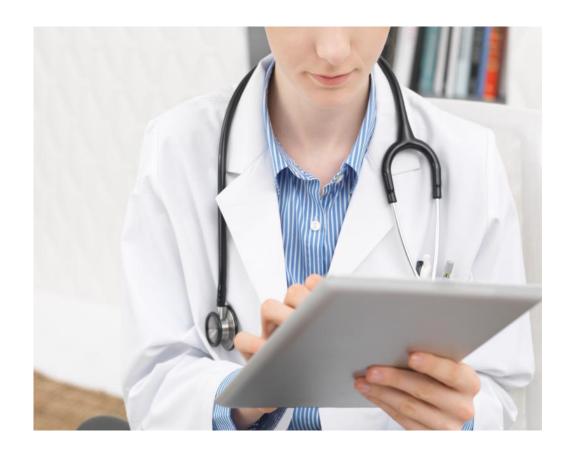
To compare processes, a total RPN for each process can be obtained by adding all the RPNs for each failure mode together

Process	Failure	Cause	Effect	Likelihood of occurrence (1-10)	Likelihood of detection (1-10)	Severity (1-10)	Risk Profile Number (RPN)	Actions to reduce cccurrence
Step 1.	1.			8	5	8	320	
Step 1.	2.			8	10	8	640	
Step 2.	1.							

Step 5. Identify actions and outcome measures

Step 5a: Identify the type of action to take:

- Eliminate prevent all future occurrences by removing the failure point.
- Control minimize all future occurrences by implementing mitigating factors.
- Accept acknowledge and accept known risks.
- If a failure is unlikely to be detected, consider putting Monitoring measures in place


Step 5b: Measure whether the action implemented was effective and if any unintended consequences occurred.

Process	Failure	Cause	Effect	Likelihood of occurrence (1-10)	Likelihood of detection (1-10)	Severity (1-10)	Risk Profile Number (RPN)	Action reduce occurr	•
Step 1.	1.								
Step 1.	2.								
Step 2.	1.								
AUSTRALIAN I	NSTITUTE OF HEALT	H INNOVATION FA	CULTY OF MEDI	CINE AND HEALTH SCI	ENCES				18

Failure Mode and Effects Analysis (FMEA)

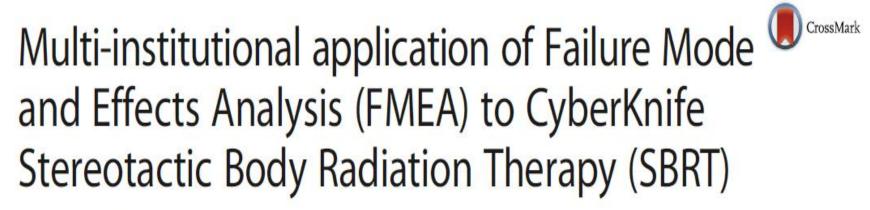
So, how does this work in practice?

Time taken

ID	Health care process	Health care setting	Facilitator ^a	Team size ^b	Number of meetings	Number of person- hours ^c	Number of failure modes	Number of actions	
	MAASTRO clinic								
1	Documentation of treatment	Radiotherapy	PR	5	4	30.0	32	17	
2	Electronic Portal Imaging	Radiotherapy	MH	5 8	6	72.0	109	33	
3	Treatment on linear accelerator	Radiotherapy	JR	5	8	60.0	70	30	
4	Release of accelerator after maintenance	Radiotherapy	PR	4	5	30.0	50	22	
	UMC Utrecht								
5	Communication of unexpected findings	Radiology Cardiology	MH	7	5	52.5	19	7	
6	Diet food process	Children's Hospital	MH	13	7	136.5	39	18	
7	Physically restraining patients	Neurosurgery	MH	7	7	73.5	31	17	
8	Ordering repeat prescriptions	Primary care	DZ	8	8	96.0	50	12	
9	Patients with hip fractures	Emergency Room Radiology Ward Operating Room	MH	8	6	72.0	120	7	
10	Medication administration (pumps)	Intensive Care Unit	MH	6	6	54.0	46	22	
11	Admission of cardiac patients	Emergency Room Cardiac Cath Room Coronary Care Unit	СР	6	6	54.0	44	6	
12	Use of a PICC line (catheter)	Neonatal Intensive Care Unit	MH	8	8	96.0	37	8	
13	Administration of blood products	Laboratory Haematology ward	MH	8	6	72.0	27	11	
		2008	Mean SD	7.2 2.2	6.3 1.3	69.1 28.7	51.8 30.6	16.2 8.8	

^aM.H. and J.R. Eindhoven University of Technology; P.R. MAAS BO alinia; D.Z. and C.P. UMC Utracht

Habraken MM, Van der Schaaf TW, Leistikow IP, Reijnders-Thijssen PM. Prospective risk analysis of health care processes: a systematic evaluation of the use of HFMEA in Dutch health care. Ergonomics. 2009;52(7):809-19


Case 1. Radiation treatment

Veronese et al. Radiation Oncology (2015) 10:132 DOI 10.1186/s13014-015-0438-0

RESEARCH

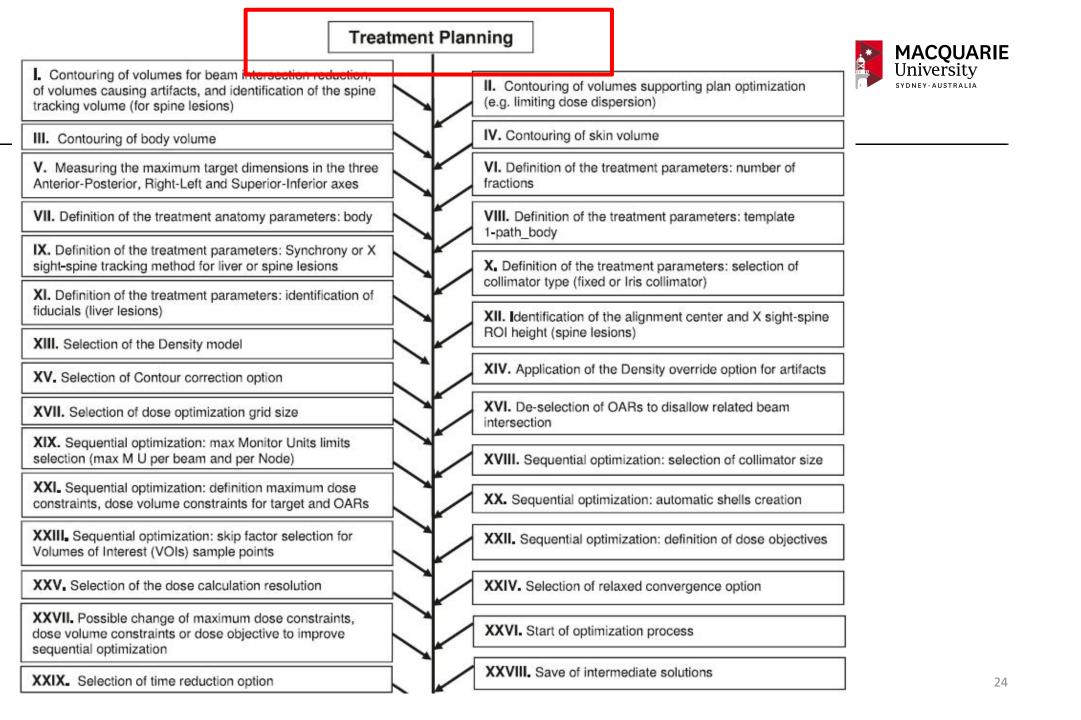
Open Access

Ivan Veronese^{1*}, Elena De Martin², Anna Stefania Martinotti³, Maria Luisa Fumagalli², Cristina Vite^{3,7}, Irene Redaelli³, Tiziana Malatesta⁴, Pietro Mancosu⁵, Giancarlo Beltramo³, Laura Fariselli⁶ and Marie Claire Cantone¹

Main processes

a) treatment planning following target delineation;

b) treatment delivery to liver tumours by using fiducial markers coupled with SRTS; andc) treatment delivery to spine lesions (the


analysis of this stage was carried out considering the process implemented at the Carlo Besta Neurological Institute Foundation).

Main processes

a) treatment planning following target delineation;

b) treatment delivery to liver tumours by using fiducial markers coupled with SRTS; andc) treatment delivery to spine lesions (the analysis of this stage was carried out considering the process implemented at the Carlo Besta Neurological Institute Foundation).

Treatment Planning

I. Contouring of volumes for beam intersection reduction, of volumes causing artifacts, and identification of the spine tracking volume (for spine lesions)

III. Contouring of body volume

V. Measuring the maximum target dimensions in the three Anterior-Posterior, Right-Left and Superior-Inferior axes

VII. Definition of the treatment anatomy parameters: body

IX. Definition of the treatment parameters: Synchrony or X sight-spine tracking method for liver or spine lesions

XI. Definition of the treatment parameters: identification of fiducials (liver lesions)

XIII. Selection of the Density model

XV. Selection of Contour correction option

XVII. Selection of dose optimization grid size

XIX. Sequential optimization: max Monitor Units limits selection (max M U per beam and per Node)

XXI. Sequential optimization: definition maximum dose constraints, dose volume constraints for target and OARs

XXIII_ Sequential optimization: skip factor selection for Volumes of Interest (VOIs) sample points

XXV. Selection of the dose calculation resolution

XXVII. Possible change of maximum dose constraints, dose volume constraints or dose objective to improve sequential optimization

XXIX. Selection of time reduction option

II. Contouring of volumes supporting plan optimization (e.g. limiting dose dispersion)

IV. Centeuring of skin volume

VI. Definition of the treatment parameters: number of fractions

VIII. Definition of the treatment parameters: template 1-path_body

X. Definition of the treatment parameters: selection of collimator type (fixed or Iris collimator)

XII. Identification of the alignment center and X sight-spine ROI height (spine lesions)

XIV. Application of the Density override option for artifacts

XVI. De-selection of OARs to disallow related beam intersection

XVIII. Sequential optimization: selection of collimator size

XX. Sequential optimization: automatic shells creation

XXII. Sequential optimization: definition of dose objectives

XXIV. Selection of relaxed convergence option

XXVI. Start of optimization process

XXVIII. Save of intermediate solutions

MACQUARIE University

SYDNEY AUSTRALL

Sub-process	Ν	Potential failure mode	Potential causes of failure	Potential effects of failure	S	0	D		SYDN Y AUSTRA
VI. Definition of the treatment parameters: number of fractions	1	Typing of a wrong number of fractions	Erroneous identification of the fractions number on the patient's record, wrong patient's record (coincidence of names), wrong typing	Wrong fraction dose administration	10	2	3	60	
XII. Identification of the align centre and X sight-spine ROI height (in the case of spinal lesions)	2	Wrong positioning of the align centre and ROI height	Inexperience, presence of multiple lesions, damaged vertebrae	Tracking non-representative of the lesion's movement (underdosage of the PTV, overdosage of the OAR)	7	2	7	98	
XXXIII. Enlargement of the calculation grid to all the CT volume in the three views	3	Missed enlargement of the calculation grid to all the CT volume	Inexperience, distraction, haste, activity interruption	Missed visualization of the hot spots in areas far from target and OARs, partial evaluation of the DVH	9	2	3	54	
XXXVI. Physician's approval of the treatment plan, with eventual re-prescription of dose and number of fractions	4	Missed or wrong re-prescription of dose or number of fractions	Inexperience, distraction, haste, activity interruption, high workload, missed communication between physicist and physician	Erroneous dose delivery	10	2	4	80	
XLII. Print of the report containing plan data, of the dose statistics table and of two images representative of the treatment plan (3D dose distribution, beams entry, DVH data and charts)	5	Missed or wrong printing of the plan report, of the table and images, printing of report, table and images not concerning the approved plan	Inexperience, distraction, haste, activity interruption, high workload, printing performed not contextually with the plan approval, missed communication among physicists	Missed check of the treatment plan, delivery of a sub-optimal plan or erroneous dose (in case there are other deliverable plans present)	10	1	4	40	

Case 2. Medication management

BMJ OPEN of errors in prescribing and administering drugs in paediatric wards: a quality improvement report

Paola Lago,¹ Giancarlo Bizzarri,² Francesca Scalzotto,¹ Antonella Parpaiola,¹ Angela Amigoni,¹ Giovanni Putoto,³ Giorgio Perilongo¹

 Table 1
 Rating scales used to assign values to the occurrence (O), severity (S), and detection (D) scores in the failure mode and effect analysis of the drug administration process

Occurr	rence (O)I	Severit	ty (S)	Detect	ion (D)
Score	Failure mode probability	Score	Description of injury	Score	Likelihood of detection
1	Remote: failure unlikely to occur (happening in 1 in 10000 episodes observed)	1	No injury or patient monitoring alone	1	Very high: detected 9/10 times
2	Low: relatively rare failure (happening in 1 in 1000 episodes observed)	2	Temporary injury needing additional intervention or treatment	2	High: detected 7/10 times
3	Moderate: occasional failure (happening in 200 episodes observed)	3	Temporary injury with longer hospital stay or increased level of care	3	Medium: detected 5/10 times
4	High: recurrent failure (happening in 1 in 100 episodes observed)	4	Permanent effects on body functions	4	Low: detected 2/10 times
5	Very high: common failure (happening in 1 in 20 episodes observed)	5	Death or permanent loss of major body functions	5	Remote: detected 0/10 times

The risk priority number (RPN) is calculated by multiplying the O, S and D scores.

Results

- 37 high-risk failures with 71 associated causes and effects.
- None of the steps in the drug administration process were free of potential failure modes
- Prescription and preparation of the drugs emerged as the most vulnerable steps (with RPNs over 48/125).
- The most critical element in the prescribing of drugs was the calculation of the doses required, especially for infusion drugs (RPN 60/125). This high-risk failure mode was found in all the paediatric units, and was believed to be related to doctors and nurses not having reference material available with all the pertinent information on the methods for preparing and administering the drugs, and the proportions and formulas for adapting the drugs' dosage to a given patient.

MACQUARIE University SYDNEY-AUSTRALIA

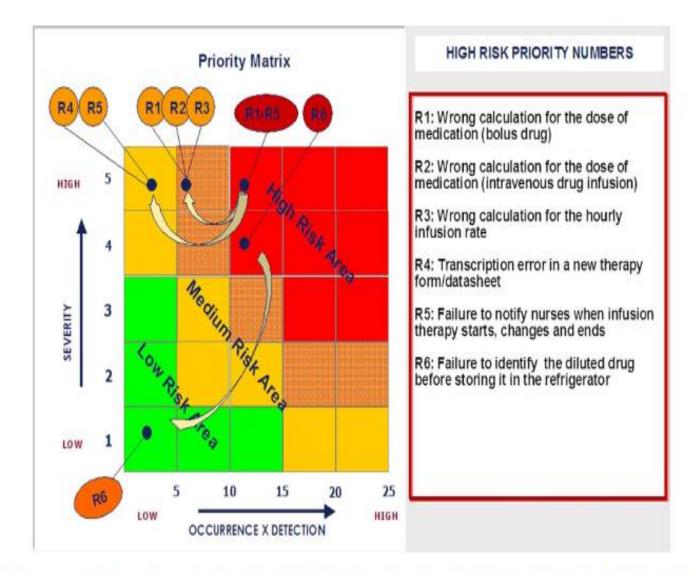


Figure 1 Priority matrix, plotting severity against probability (the product of O×D) before and after applying failure mode and effect analysis.

	Table 3 High-risk failure-modes identified across multiple medication us	e failure mode ar	nd effect	analysi	s			
	Ulab siels feilung meden	Process	NICH	DIOU	Acute	Once hermatelem	General	N° High-Risk
	High-risk failure modes	phases	NICU	PICU	care	Onco-haematology	Ped	Failure Modes
	Error in using the Kanban system for re-order drugs Failure to check pharmacy supplies (to cross-check drugs ordered against drugs delivered and to correlate the drug package with the patient)	Supplying Supplying					:	1 3
	Error in calculating the dosage of medication (Failure to measure patient's weight and height, failure to correctly prescribe bolus and continuous infusion drugs, 'high-risk' intravenous drugs, dilutions, infusion rate, frequency of administration)	Prescription	•	•	•	•	•	8
	Failure to check dose and frequency of administration	Prescription			•			4
Differing contexts: NICU 	Erroneous prescription of therapy on the order form (writing error and transcription error on a new therapy form, oral prescription over the phone during the night)	Prescription		•	•			3
• PICU	Incomplete reassessment of the daily clinical status and lack of written notes and/or spoken information on changes in clinical situation	Prescription	•					2
Acute Care	Failure to notify to the nurse a new medication order (either for bolus or and infusion, for changes and end of infusion)	Prescription	•	•				4
 Onco-haematology 	Failure to check chemotherapy components	Prescription				14		1
 General 	Unavailability of drugs at the time of patient's transfer owing to lack of medication reconciliation, and urgent need for drugs from the pharmacy	Prescription						1
paediatrics	Misinterpretation of prescription by the nurse owing to illegible handwriting or shortcuts	Prescription				•	•	3
	Failure to consult handbook to check proper dilution, concentration, compatibility, rate of administration, photosensitivity and method of administration	Preparation	•					2
	Erroneous calculation of the prescribed dose of medication (incorrect choice of proportions to obtain the right dose in ml, or of the proportions needed to reach the maximum concentration of the drug)	Preparation	•		•			1
	Failure to identify type of drug in syringe during infusion and before storing it in the refrigerator	Preparation	•	•				2
	Failure to explain to parents how to monitor the drug's administration	Administering						2
	Inadequate monitoring of potential adverse effects	Monitoring			•			1
	Total high-risk failure modes		8	8	9	6	6	37
	General Ped, general paediatric ward; NICU, neonatal intensive care unit; PICU, p . Error was found in the unit selected	aediatric intensive o	care unit.					31

	Table 4 Selec	cted new activities to address high-risk failure modes affecting the five paedi	atric drug-delivery processes
	Process phase	New activities of improvement plans	Unit
	Supplying Supplying	Change the collection point for Kanban card* Check consistency and sign delivery note. Preprinted label to identified patient with barcode. New form for re-ordering galenic drugs	General Ped General Ped
	Prescription	Quiet place for preparing prescriptions without distraction. Single formulary. Prescription of active ingredient, in mg. Tables for standard doses and dilutions. Healthcare worker involved to get daily weight of patients	NICU, PICU, PED.Acute Care, Onco-haematology
Actions to reduce	Prescription	Doctors doublecheck and double-sign	NICU, PICU, PED.Acute Care, Onco-haematology, General Ped
occurrence	Prescription	Clearly understandable written prescription. Preventive written prescription necessary or written prescription by doctor on duty	PICU, PED. Acute Care, Onco-haematology
	Prescription	Daily discussion of clinical situation and ongoing therapy between resident and attending physicians. Daily notes by attending physician	NICU
	Prescription	Yellow Post-it on therapy folder. Nurse signs	NICU, PICU
	Prescription	Green label for chemotherapy. Nurse doublechecks and doublesigns for preparation; and nurse signs for drug administration	Onco-haematology
	Prescription	List of medication available prior to patient's transfer. (medication reconciliation)	Onco-haematology
	Preparation	Write clearly and comprehensibly. Nurse doublechecks and doublesigns. Easy-to-read therapy form. Pre-printed label with barcode	PED. Acute Care, General Ped, Onco-haematology
	Preparation	Pre-printed label briefly reports the essential notes for correct dilution, compatibility, rate of administration and the sign of the nurse who prepared the medication	NICU, PED. Acute Care
	Preparation	Facsimile of the proportions required on hand in the room	NICU
	Preparation	All diluted drugs are discarded once used	NICU, PICU
	Administering	Written instructions for parents involved in drug administration	General Ped
	Monitoring	Check vital signs and site of infusion for certain drugs	PED. Acute Care
	*The Kenhan ear	rd is a massage that alorte to the deplotion of product stocks and triggers their replace	abmont 22

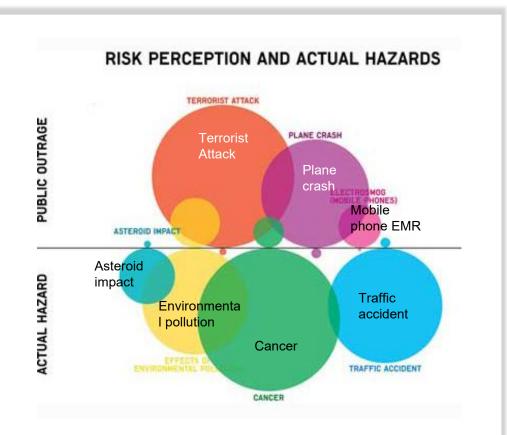
*The Kanban card is a message that alerts to the depletion of product stocks and triggers their replenishment. General Ped, general paediatric ward; NICU, neonatal intensive care unit; PICU, paediatric intensive care unit.

Corrective Actions

- Each unit independently developed plans for new corrective actions focussing only on the higher risk failure modes. Some were common to all five units.
- After corrective action implementation, no steps in the revised drug administration process had an RPN>32/125.
- The reduction in the RPNs for the higher risks was around 60% at almost all units, and 23 of 37 higher risk failure modes now plotted in the low-risk area (yellow and green area of the priority matrix).
- Clinical audits conducted by the team leader 3 and 6 months later confirmed that the main clinical changes and innovations introduced were still firmly in place.

Patient view of risk:

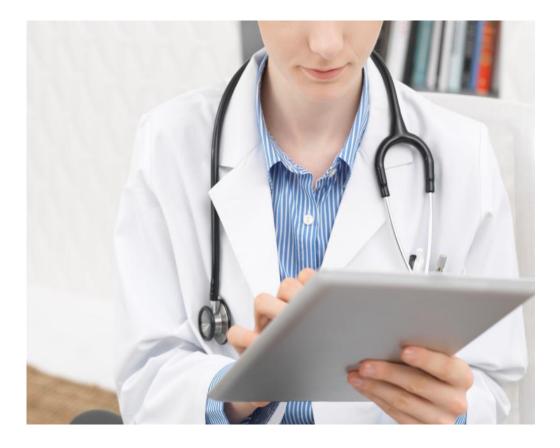
- May differ significantly from the actual evidence-based risk
 - Patient experience
 - Patient fears
 - Patient preferences
- Where patients are involved, consider the patient's perception of risk, in addition to any evidence-based risk, when deciding on risk management strategies



Patient view of risk; Hazard vs. Outrage¹

Underestimate low outrage hazards, Overestimate high outrage hazards

- Voluntary/involuntary
- Familiar/exotic
- Natural/industrial
- Memorable/not memorable
- Dreaded/not dreaded
- Chronic/catastrophic
- Knowable/not knowable
- Fair/unfair
- Morally irrelevant/relevant
- Trust/no trust
- Responsive
 process/unresponsive


Susanna Hertrich, RISK, 2010

Failure Mode and Effects Analysis (FMEA)

In summary, FMEA is:

- A useful tool for analysing:
 - high impact failures
 - critical changes to workplace practice
 - large scale workplace redesign
- Can be costly:
 - takes time, resources
 - need a (large) multidisciplinary team who have expert knowledge of the process you are analysing
 - need a safety & quality professional to lead and direct
- Most of the risks you will encounter in healthcare involve behaviours:
 - ratings may not be obvious (but *relative* ratings are OK)
 - ratings require consensus among the team
 - the consensus process will build teamwork

AUSTRALIAN INSTITUTE OF HEALTH INNOVATION Faculty of Medicine, Health and Human Sciences

Thank you

Contact details

A/Prof Robyn Clay-Williams robyn.clay-williams@mq.edu.au

aihi.mq.edu.au